Максвелла распределение - Definition. Was ist Максвелла распределение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Максвелла распределение - definition

РАСПРЕДЕЛЕНИЕ ВЕРОЯТНОСТЕЙ, ВСТРЕЧАЮЩЕЕСЯ ВО МНОГИХ ЕСТЕСТВЕННЫХ НАУКАХ
Максвелла распределение; Распределение Максвела; Распределение Максвелла — Больцмана; Максвелловское распределение; Характерные скорости молекул
  • Функция плотности распределения для 10<sup>6</sup> молекул кислорода при −100, 20, 600 градусах Цельсия

МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ         
распределение по скоростям молекул системы в состоянии термодинамического равновесия (при условии, что поступательное движение молекул описывается законами классической механики). Установлено Дж. К. Максвеллом в 1859.
Максвелла распределение         

распределение по скоростям (или импульсам) молекул системы, находящейся в состоянии термодинамического равновесия. Впервые установлено Дж. К. Максвеллом в 1859. Согласно М. р., вероятность Δω (vx, vy, vz) того, что проекции скорости молекулы лежат в малых интервалах от vx до vx + Δvx, от vy до vy + Δvy и от vz до vz + Δvz определяется формулой:

(1)

Здесь m - масса молекулы, Т - абсолютная температура системы, k - постоянная Больцмана.

Вероятность того, что абсолютное значение скорости лежит в интервале от v до v + Dv, вытекает из (1) и имеет вид:

(2)

Эта вероятность достигает максимума при

Скорость v0 называется наиболее вероятной. Чем ниже температура системы, тем большее число молекул имеют скорости, близкие к наиболее вероятной (см. рисунок).

Среднее число частиц в 1 см3 газа со скоростями в интервале от v до v + Dv равно Dn(v) = n0 Dw(v), где n0 - полное число частиц в 1 см3.

С помощью М. р. можно вычислять средние значения скоростей молекул и любых функций этих скоростей. В частности, средняя квадратичная скорость

лишь немного (в раз) превышает наиболее вероятную скорость. Например, для азота при Т " 300 К м/сек, a v0 " 360 м/сек.

М. р. вытекает из Гиббса распределения (См. Гиббса распределение) канонического в том случае, когда поступательное движение частиц можно рассматривать в классическом приближении (см. Статистическая физика). М. р. не зависит от характера взаимодействия частиц системы и от внешних сил и потому справедливо как для молекул газа, так и для молекул жидкостей и твёрдых тел. М. р. справедливо также для броуновских частиц, взвешенных в газе или жидкости (см. Броуновское движение).

Экспериментальное подтверждение М. р. получено в опытах с молекулярными пучками.

Лит.: Кикоин И. К., Кикоин А. К., Молекулярная физика, М., 1963; Штрауф Е. А., Молекулярная физика, Л. - М., 1949.

Г. Я. Мякишев.

Распределение молекул азота по скоростям v при двух значениях абсолютной температуры T1 и T2; Δw/Δv - отношение вероятности того, что абсолютное значение скорости лежит в интервале от v до v + Δv к интервалу скорости Δv.

Распределение Максвелла         
Распределе́ние Ма́ксвелла — общее наименование нескольких распределений вероятности, которые описывают статистическое поведение параметров частиц идеального газа. Вид соответствующей функции плотности вероятности диктуется тем, какая величина: скорость частицы, проекция скорости, модуль скорости, энергия, импульс и т.

Wikipedia

Распределение Максвелла

Распределе́ние Ма́ксвелла — общее наименование нескольких распределений вероятности, которые описывают статистическое поведение параметров частиц идеального газа. Вид соответствующей функции плотности вероятности диктуется тем, какая величина: скорость частицы, проекция скорости, модуль скорости, энергия, импульс и т. д. — выступает в качестве непрерывной случайной величины. В ряде случаев распределение Максвелла может быть выражено как дискретное распределение по множеству уровней энергии.

Наиболее значимое распределение Максвелла записывается для модуля скорости частицы v {\displaystyle v} в непрерывном случае и имеет плотность:

f v ( x ) = B x 2 exp [ β x 2 ] ( x 0 ) {\displaystyle f_{v}(x)=Bx^{2}\exp \left[-\beta x^{2}\right]\,\,(x\geq 0)} и f v ( x ) = 0 ( x < 0 ) , {\displaystyle f_{v}(x)=0\,\,(x<0),}

где x {\displaystyle x}  — формальная переменная, фактор β > 0 {\displaystyle \beta >0} определяется типом частиц и температурой, а множитель B {\displaystyle B} подбирается в зависимости от β {\displaystyle \beta } для обеспечения нормировки. Именно это выражение считается максвелловским распределением в математике, хотя для других параметров частиц аналитический вид распределения Максвелла будет иным.

Распределение Максвелла лежит в основе кинетической теории газов, объясняющей многие фундаментальные свойства газов, включая давление и диффузию. С его помощью вычисляются средние и наиболее вероятные скорости и энергии молекул газа. Оно также применимо для описания электронных процессов переноса и других явлений в физике и химии. Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Данное распределение является реализующимся с наивысшей вероятностью распределением изучаемого параметра.

Was ist МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ - Definition